Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence.
نویسندگان
چکیده
Previous studies have shown that Listeria monocytogenes flagellar motility genes, including flaA, encoding flagellin, are transcriptionally down-regulated at 37 degrees C. For some L. monocytogenes strains, temperature-dependent motility gene expression is less stringent. By using flaA-lacZ transcriptional fusions, we identified regions upstream of the -35/-10 promoter elements that are necessary for temperature-dependent expression of flaA in L. monocytogenes strain EGDe. Whereas the sequence of the flaA promoter region was identical in L. monocytogenes strain 10403S, transcriptional activity was only partially down-regulated at 37 degrees C in 10403S. This finding suggested that a transacting regulatory protein with differential expression or activity in EGDe might be involved in temperature-dependent transcription of flaA. Indeed, a protein factor capable of specifically binding to the flaA promoter region was identified in cytoplasmic extracts of EGDe by using affinity purification and MS. Deletion of the factor-encoding gene (lmo0674) resulted in loss of temperature-dependent flaA expression and an increase in flaA promoter activity. Expression of other motility genes was also deregulated in the lmo0674 deletion. We have designated lmo0674 as mogR, indicating its role as a motility gene repressor. In tissue culture models, MogR repression of flaA during intracellular infection was independent of temperature and a deletion of mogR reduced the capacity for cell-to-cell spread. During in vivo infection, a deletion of mogR resulted in a 250-fold decrease in virulence. These studies indicate that regulation of flagellar motility gene expression and/or other genes controlled by MogR is required for full virulence of L. monocytogenes.
منابع مشابه
The MogR Transcriptional Repressor Regulates Nonhierarchal Expression of Flagellar Motility Genes and Virulence in Listeria monocytogenes
Flagella are surface structures critical for motility and virulence of many bacterial species. In Listeria monocytogenes, MogR tightly represses expression of flagellin (FlaA) during extracellular growth at 37 degrees C and during intracellular infection. MogR is also required for full virulence in a murine model of infection. Using in vitro and in vivo infection models, we determined that the ...
متن کاملA Protein Thermometer Controls Temperature-Dependent Transcription of Flagellar Motility Genes in Listeria monocytogenes
Facultative bacterial pathogens must adapt to multiple stimuli to persist in the environment or establish infection within a host. Temperature is often utilized as a signal to control expression of virulence genes necessary for infection or genes required for persistence in the environment. However, very little is known about the molecular mechanisms that allow bacteria to adapt and respond to ...
متن کاملA bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression.
Flagellar motility is an essential mechanism by which bacteria adapt to and survive in diverse environments. Although flagella confer an advantage to many bacterial pathogens for colonization during infection, bacterial flagellins also stimulate host innate immune responses. Consequently, many bacterial pathogens down-regulate flagella production following initial infection. Listeria monocytoge...
متن کاملRecognition of AT-rich DNA binding sites by the MogR repressor.
The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows tha...
متن کاملListeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses
UNLABELLED The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 33 شماره
صفحات -
تاریخ انتشار 2004